3.1.30 \(\int (c+d x) \text {csch}^2(a+b x) \, dx\) [30]

Optimal. Leaf size=29 \[ -\frac {(c+d x) \coth (a+b x)}{b}+\frac {d \log (\sinh (a+b x))}{b^2} \]

[Out]

-(d*x+c)*coth(b*x+a)/b+d*ln(sinh(b*x+a))/b^2

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4269, 3556} \begin {gather*} \frac {d \log (\sinh (a+b x))}{b^2}-\frac {(c+d x) \coth (a+b x)}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)*Csch[a + b*x]^2,x]

[Out]

-(((c + d*x)*Coth[a + b*x])/b) + (d*Log[Sinh[a + b*x]])/b^2

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 4269

Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c + d*x)^m)*(Cot[e + f*x]/f), x
] + Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rubi steps

\begin {align*} \int (c+d x) \text {csch}^2(a+b x) \, dx &=-\frac {(c+d x) \coth (a+b x)}{b}+\frac {d \int \coth (a+b x) \, dx}{b}\\ &=-\frac {(c+d x) \coth (a+b x)}{b}+\frac {d \log (\sinh (a+b x))}{b^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 52, normalized size = 1.79 \begin {gather*} -\frac {d x \coth (a)}{b}-\frac {c \coth (a+b x)}{b}+\frac {d \log (\sinh (a+b x))}{b^2}+\frac {d x \text {csch}(a) \text {csch}(a+b x) \sinh (b x)}{b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)*Csch[a + b*x]^2,x]

[Out]

-((d*x*Coth[a])/b) - (c*Coth[a + b*x])/b + (d*Log[Sinh[a + b*x]])/b^2 + (d*x*Csch[a]*Csch[a + b*x]*Sinh[b*x])/
b

________________________________________________________________________________________

Maple [A]
time = 0.47, size = 56, normalized size = 1.93

method result size
risch \(-\frac {2 d x}{b}-\frac {2 d a}{b^{2}}-\frac {2 \left (d x +c \right )}{\left ({\mathrm e}^{2 b x +2 a}-1\right ) b}+\frac {d \ln \left ({\mathrm e}^{2 b x +2 a}-1\right )}{b^{2}}\) \(56\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)*csch(b*x+a)^2,x,method=_RETURNVERBOSE)

[Out]

-2*d/b*x-2*d/b^2*a-2*(d*x+c)/(exp(2*b*x+2*a)-1)/b+d/b^2*ln(exp(2*b*x+2*a)-1)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 91 vs. \(2 (29) = 58\).
time = 0.27, size = 91, normalized size = 3.14 \begin {gather*} -d {\left (\frac {2 \, x e^{\left (2 \, b x + 2 \, a\right )}}{b e^{\left (2 \, b x + 2 \, a\right )} - b} - \frac {\log \left ({\left (e^{\left (b x + a\right )} + 1\right )} e^{\left (-a\right )}\right )}{b^{2}} - \frac {\log \left ({\left (e^{\left (b x + a\right )} - 1\right )} e^{\left (-a\right )}\right )}{b^{2}}\right )} + \frac {2 \, c}{b {\left (e^{\left (-2 \, b x - 2 \, a\right )} - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csch(b*x+a)^2,x, algorithm="maxima")

[Out]

-d*(2*x*e^(2*b*x + 2*a)/(b*e^(2*b*x + 2*a) - b) - log((e^(b*x + a) + 1)*e^(-a))/b^2 - log((e^(b*x + a) - 1)*e^
(-a))/b^2) + 2*c/(b*(e^(-2*b*x - 2*a) - 1))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 166 vs. \(2 (29) = 58\).
time = 0.35, size = 166, normalized size = 5.72 \begin {gather*} -\frac {2 \, b d x \cosh \left (b x + a\right )^{2} + 4 \, b d x \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + 2 \, b d x \sinh \left (b x + a\right )^{2} + 2 \, b c - {\left (d \cosh \left (b x + a\right )^{2} + 2 \, d \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + d \sinh \left (b x + a\right )^{2} - d\right )} \log \left (\frac {2 \, \sinh \left (b x + a\right )}{\cosh \left (b x + a\right ) - \sinh \left (b x + a\right )}\right )}{b^{2} \cosh \left (b x + a\right )^{2} + 2 \, b^{2} \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + b^{2} \sinh \left (b x + a\right )^{2} - b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csch(b*x+a)^2,x, algorithm="fricas")

[Out]

-(2*b*d*x*cosh(b*x + a)^2 + 4*b*d*x*cosh(b*x + a)*sinh(b*x + a) + 2*b*d*x*sinh(b*x + a)^2 + 2*b*c - (d*cosh(b*
x + a)^2 + 2*d*cosh(b*x + a)*sinh(b*x + a) + d*sinh(b*x + a)^2 - d)*log(2*sinh(b*x + a)/(cosh(b*x + a) - sinh(
b*x + a))))/(b^2*cosh(b*x + a)^2 + 2*b^2*cosh(b*x + a)*sinh(b*x + a) + b^2*sinh(b*x + a)^2 - b^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (c + d x\right ) \operatorname {csch}^{2}{\left (a + b x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csch(b*x+a)**2,x)

[Out]

Integral((c + d*x)*csch(a + b*x)**2, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 80 vs. \(2 (29) = 58\).
time = 0.44, size = 80, normalized size = 2.76 \begin {gather*} -\frac {2 \, b d x e^{\left (2 \, b x + 2 \, a\right )} - d e^{\left (2 \, b x + 2 \, a\right )} \log \left (e^{\left (2 \, b x + 2 \, a\right )} - 1\right ) + 2 \, b c + d \log \left (e^{\left (2 \, b x + 2 \, a\right )} - 1\right )}{b^{2} e^{\left (2 \, b x + 2 \, a\right )} - b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)*csch(b*x+a)^2,x, algorithm="giac")

[Out]

-(2*b*d*x*e^(2*b*x + 2*a) - d*e^(2*b*x + 2*a)*log(e^(2*b*x + 2*a) - 1) + 2*b*c + d*log(e^(2*b*x + 2*a) - 1))/(
b^2*e^(2*b*x + 2*a) - b^2)

________________________________________________________________________________________

Mupad [B]
time = 0.08, size = 49, normalized size = 1.69 \begin {gather*} \frac {d\,\ln \left ({\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}-1\right )}{b^2}-\frac {2\,\left (c+d\,x\right )}{b\,\left ({\mathrm {e}}^{2\,a+2\,b\,x}-1\right )}-\frac {2\,d\,x}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)/sinh(a + b*x)^2,x)

[Out]

(d*log(exp(2*a)*exp(2*b*x) - 1))/b^2 - (2*(c + d*x))/(b*(exp(2*a + 2*b*x) - 1)) - (2*d*x)/b

________________________________________________________________________________________